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ABSTRACT: Quantitative optical phase information provides an alternative method
to observe biomedical properties, where conventional phase imaging fails. Phase Network
retrieval typically requires multiple intensity measurements and iterative computations /

to ensure uniqueness and robustness against detection noise. To increase the ' Rep
measurement speed, we propose a single-shot quantitative phase imaging method ‘ \

with metasurface optics that can be conveniently integrated into conventional imaging

systems with minimal modification. The improvement of the measurement speed is LCP

simultaneously made possible by combining deep learning with the transport-of-
intensity equation. As a proof-of-concept, we demonstrate phase retrieval on both

Metasurfaces

Quantitative
phase image

calibrated phase objects and biological specimens by using an imaging system
integrated with our metasurface. When combined with the matched neural network, the system yields result with errors as low as 5%
and increased space-bandwidth-product. A multitude of commercial applications can benefit from the compactness and rapid

implementation of our proposed method.

KEYWORDS: Quantitative phase information, Metasurface, Deep learning, Transport-of-intensity equation

M etasurfaces are praised for their capability in manipulat-
ing light at subwavelength scales and achieving arbitrary
wavefront modulation."”* Due to their low intrinsic loss,
optical designers have long favored dielectric materials over
plasmonic materials for metasurface design, potentially
replacing traditional optical elements,’ including refractive
lenses,”* beam manipulation element,”™"* and optical analog
computing devices,""™*' such as edge detection, which has
been used for observing the phase objects which lacks contrast
and absorbs no light. In recent years, quantitative phase
imaging (QPI) has garnered increasing attention with the
emergence of multifunctional metasurfaces. QPI is a useful
method to extract information more than the shape and size of
the objects. Integrating functional metasurfaces in QPI
applications has the potential to reduce the overall sizes and
weights in conventional QPI systems and promote their
widespread application beyond laboratory settings.”>~>" QPI
methods based on interferometry often face limitations related
to environmental stability and image resolution.”® Conse-
quently, direct phase retrieval based on transport-of-intensity
(TIE) method has gained popularity in research.”” It has been
demonstrated the transitioning of intensity distribution along
the wave propagation direction can provide the phase
distribution of the object being imaged.”® Therefore, TIE-
QPI requires at least two intensity measurements offset from
the ideal focal plane.”’ Since traditional refractive and
diffractive optical elements are incapable of generating multiple
copies of the image with solely controlled focal depths and
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offsets, typical TIE-QPI setups acquire the intensity measure-
ments by mechanically displacing the image plane along the
propagation direction of images and suffer low detection speed.
We can rid ourselves of this inconvenience by redesigning the
imaging setup with metasurface optics.

Another major speed improvement can be made by
changing the phase retrieval process. After the intensity
measurement, a reconstruction pipeline attempts to recover
the phase of the scattered field and its associated properties of
the object. Aside from the lengthy iterative computation,
conventional reconstruction algorithms such as Fast Fourier
Transform (FFT)-TIE, Discrete Fourier Transform DCT-TIE
are susceptible to image boundaries, noise, or low-frequency
artifacts. These algorithms require empirical knowledge of
hyperparameters, and certain approximations of the objects
being imaged must be assumed to ensure uniqueness and
robustness of solutions. In recent years, computational imaging
has again attracted numerous attentions due to the rapid
development of high-performance computing and the increas-
ingly user-friendly machine-learning framworks.”>~** Physics-
informed neural networks, as a branch of artificial neural
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networks, have found wide applications and excellent general-
ization performance in linear systems.*>** Based on these
findings, it is possible that the iterative TIE for the QPI
reconstruction pipeline can be transformed by physics-
informed neural networks, which, once trained, can predict
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Figure 1. (a) TIE-QPI pipeline. In the 4f system, the RCP
component is focused before the detector plane and LCP is defocused
after the detector plane. (b) The metasurface’s ability to diverge left-
circularly polarized (LCP) and converge right-circularly polarized
(RCP) light, directing them in divergent directions. (c) The captured
CCD image, containing both far-sighted and near-sighted intensity
images, are processed using deep learning techniques for quantitative
phase reconstruction.

the phase information in the blink of an eye and with higher
confidence in the solutions.

In the following sections of this work, we first introduce the
design of a functional metasurface and a matching surrogate
neural network for TIE, along with the integration of these two
components into a general imaging setup for snapshot phase
retrieval. When inserted in an imaging setup, the metasurface
simultaneously splits the original image into two copies with
opposite polarizations. This results in two spin images with
ultrasmall focal length differences along the optical axis, formed
at different detector locations. This spatial separation enables
the simultaneous capture of two slightly blurred images,
eliminating the need for specimen or camera displacements.
With the single-shot intensity measurement, a trained neural-
network-based phase retrieval algorithm then reconstructs the
phase information on the object. Such a configuration leads to
a more stable setup, a faster acquisition system, and the
potential for a rapid and necessary QPI configuration. The
system presented here comprises a single metasurface and is
fundamentally distinct, being noninterferometric and achieved
in a single-shot manner.

Figure 1 illustrates a QPI pipeline with the proposed
functional metasurface inserted into a generic imaging system.
With the optimized phase function, the metasurface diverts the
left-handed circular polarization (LCP) and right-handed
circular polarization (RCP) images into separate directions
and adds opposite focal power to the two polarizations such
that the CCD is near-sighted for the RCP images and far-
sighted for the LCP images, as shown in Figure 1(b). One

configuration of particular interest is where the designed
metasurface is positioned at the Fourier plane of the 4f system.
Figure 1(a) shows a schematic diagram of the optical path
principle of imaging, where the light illuminating the sample is
imaged on the CCD after passing through the 4f system.
Following image acquisition, deep learning aids in phase
reconstruction, as presented in Figure 1(c).

When the metasurface is positioned at the Fourier plane, a
linearly polarized beam is incident on the object; the first lens
(L1) computes the Fourier transform of the electric field of the
incident beam. The dielectric metasurfaces function by
inducing opposite transverse and longitudinal phase shifts on
the LCP and RCP components. Therefore, the phase spectrum
of the metasurface can be expressed as follows:

@, cprep(tt, v) = 6, 27uf tan 6

+oklfog + Gfu) + () = f]
(1)
where A is the working wavelength, f = 50 mm is the focal

length of the lenses in the 4f system, and fs is set to 5 m. The
value of tan @ is determined by the metasurface parameter

tan 6 = %, where A is the period of the metasurface. 4 and v

are the spatial coordinates at the Fourier plane. 6, = +1
indicates the LCP and RCP components. As described by eq 1,
the metasurface phase profile is that of a blazed grating that
angularly separates the two polarizations by an angle 6. The
two beams are concurrently captured by a camera. Mathemati-
cally, the complex output field at the camera plane is delineated
as

Ercprep(, ) = FYFE,(x, y)]
X eXP[icDLCP,RCP(”x )1} (2)

where 7 and F ' is the Fourier (inverse Fourier) operator
and (x,y) are the spatial coordinates at the input and output
planes. The intensity profile captured by the camera is
expressed as

IE;,(x, y) ® {6(x + o,ftand, y)
+ Fleplal s + G + G — £ 0 (3)

The TIE is derived from the parabolic wave equation and
establishes a connection between W(x;y) representing the
input field and its axial intensity derivative,"’ given by

ol (x,
% = —iVL-[I(x, y)V,¥(x, y)]. Here, the symbol

£ jo . . .
vV, = g + };—y denotes the two-dimensional gradient operator
operating across the transverse coordinates. The variable I(x,y)
signifies the intensity distribution in the chosen plane. To
ol(x,y)

compute the intensity derivative —5. one can utilize the
z

defocused intensity distributions along the optical axis:
I(x,y,z+ Az /2) I(x,y,z— Az /2) Az

Az - Az 7
defocus distance.

Figure 2 illustrates the details of the fabricated dielectric
metasurface. A photograph of the fabricated sample and its
measured phase distribution is shown in (a) and (c),
respectively. Figure 2(c) provides a schematic representation
of the optical axis distribution of the sample, where a indicates
the orientation of the metasurface structure. Figure 2(d)

denotes the axis

, where
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Figure 2. Characterization of the fabricated sample and the simulated intensity distribution of the metasurface. (a) The photograph of the
metasurface and (b) birefringence image. (c) The schematic figure of the optical axis distribution. (d) The phase retardance image. Scale bar, 200
um. (e) The wavelength-dependent transmission (T, green color) and reflection (R, red color). (f) The scanning electron microscope (SEM)
images of the sample. Scale bar, 20 ym. Inset, zoomed in SEM image, scale bar 500 nm. (g-k) The intensity distribution along the xy plane at
various propagation planes, as indicated by the dashed line in (1). Scale bar is 3 mm. (1) Simulated intensity distribution along the xz plane. Scale

bar, 20 mm.
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Figure 3. Experiment for metasurface function. (a) Experimental
setup. (b) Intensity profile of the captured images.
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presents the phase retardance image of the sample, indicating a
phase retardance of 266 at a wavelength of 532 nm. Therefore,
our sample can be considered a half-wave plate, capable of
achieving higher circular polarization efficiency. The total
transmission of the sample is around 95% at the working
wavelength with a minimal reflection. The scanning electoral
microscopy (SEM) images in Figure 2(f) depict the laser
writing nanostructures. The sub-50 nm nanopores are helpful
in reducing Rayleigh scattering and thereby enhance overall
transmittance.”®*” Details of the metasurface fabrication can be
found in Note 1 in the Supporting Information.

To examine the functionality of the designed metasurface,
simulated results are presented in Figure 2(g)-(1). The Fresnel
diffraction of the modulated field is described by’
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Figure 4. To test the proposed scheme, four different thicknesses with S0 nm (b-f), 7S nm (g-k), 100 nm (I-p), and 125 nm (q-u) as the phase
objects are employed for our experiment. (b-u) The left two panels indicate the far-sighted and near-sighted images. The following panels are the
extracted TIE-based QPI images, deep learning-assisted QPI images, and atomic force microscopy (AFM) images. The scale bar changes to 125
nm. (v-z) Experimental results for the deep learning assisted QPI for biomedical samples. (v) The raw images captured by CCD. The following
three panels are the intensity difference of the far-sighted and a near-sighted images, the resulted QPI and the perceptive view of the QPL

w explikz]
Egi(u, v) = sz)ﬂ—z [/Ao(x, )@y cp rep

exp[%(u —x) + (v - y)z]dxdy @

Here, Ay(x, y) = P represents an incident Gaussian
distribution with a beam waist @ = 1 mm. k = 27/4, where 4
denotes the wavelength of the light in a vacuum and z denotes
the propagation distance. As observed from the simulation
results, during propagation, the RCP light converges, while the
LCP light continues to diverge as the light transmits to the
metasurface, as evident from the xy-plane. Further validation of
these findings is conducted in the xz-plane.

To verify the performance of the metasurface within the 4f
optical system according to our design, the designed
metasurface is positioned in the 4f optical setup and an
amplitude mask is employed to access its properties (see
Figure 3). The metasurface is situated at the Fourier plane of

the imaging system. The object utilized is a custom-made
amplitude mask (details can be found in the Supporting
Information, Note 2). The CCD is moved from the image
plane z, — 2Az to z, to zy + 2Az When the detector is distant
from the focal plane, both the LCP and RCP components are
blurred. At the z, — Az plane, the RCP component is focused.
At the z, plane, both the RCP and the LCP components are
slightly defocused. Hence, when the detector is positioned at
the z;, + Az plane, the LCP component is focused. When the
detector is placed at z;, + 2Az, both components are defocused.
Therefore, when the detector is at the z, plane, the intensities
of LCP and RCP are slightly different, resulting in farsighted
and nearsighted images, facilitating the use of the TIE.
Figure 4 illustrates the optical setup of an imaging system
integrated with a conventional microscope system for the QPL
A beam from a green LED (Thorlabs, MS30L4-C1) is
collimated using a bandpass filter (528 nm =+1.4, Edmund
Optics) for illumination. Microscopic samples are optically
magnified using a microscope objective (0.6-NA, 40X,
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Figure 5. (a) Each block, as specified, contains a convolutional layer and an activation layer. The number on it represents the filter size. The 2D
down sampling process is facilitated by Max Pooling layers, and the up-sampling process is carried out through interpolation. The skip connection
is implemented by concatenating the outputs from the down-sampling and the upsampling processes at each level. Illustrates deep learning applied
to inseparable data. (b-d) Depictions of Othe input. (e-g) The predicted QPI images. (h-j) The ground truth. (k-m) the difference between the

prediction and the ground truth. The scale bar is 20 pm.

Olympus LUCPlanFLN) and tube lens (TTL 180-A,
Thorlabs) to obtain a real intermediate image, as depicted
within the gray dashed frame. The intermediate image is then
aligned with the input of the following 4f system, as described
in Figure 4. Both the near-sighted and the far-sighted images
are captured simultaneously. It is observed that with thicker
samples the contrast between the near-sighted and far-sighted
images increases. To extract quantitative phase information,
the TIE is employed.”’ The detailed phase object fabrication
details and the reconstruction algorithm can be found in
Supporting Information Notes 3 and 4.

In the reconstruction pipeline, a convolutional neural-
network-based architecture known as ResNet is utilized. The
constructed ResNet comprises 6 residual blocks for each filter
size and accepts input images with one channel as LCP and the
other as RCP. We used Adam Optimizer with the MSE loss
function and an exponentially decayed learning rate,
commencing at le-S with a decay rate of 0.9 every 10 epochs,
spanning a total of 150 epochs. The loss function is mean
squared error (MSE):MSE = % > (Y- 1,)?, where  is the
number of data points, Y; is the observed values, and Y, is the
predicated value. More details can be found in Note S in the
Supporting Information. Comparing the reconstruction results
obtained from the US-TIE and our approach to atomic force
microscopy (AFM) measurement, consistency is generally
observed, except for certain instances.

Furthermore, we test in situ QPI with our setup on lived
HEK cells. These samples are cultured in a humidified
incubator and 5% CO, in Dulbecco’s modified Eagle’s
medium. Cells were incubated in a controlled environment
of 37 at 37°C, 5% CO,, and 70% humidity using a temperature
and gas stage incubation system. Please refer to Supporting
Information, Note 7, for cell preparation. Label-free imaging
techniques in quantitative microscopy enable noninvasive
examination of cells, offering deep insights into cell biology
and medical research. This approach is instrumental in
elucidating disease mechanisms, facilitating drug development,
and advancing personalized medicine by providing intricate
views of cellular structures and processes without relying on
external markers. Results are illustrated in Figure 4(v)-(2).

The above-mentioned configuration generates two intensity
measurements that are completely separated spatially on the
sensor, at the cost of reduced field-of-view (FOV) and space-
bandwidth-product. Here, we continue to propose the use of
U-Net architecture to regain the FOV. This architecture
achieves skip connection by propagating lost spatial
information from the down sampling process to the feature-
abundant up sampling process, accomplished by concatenating
outputs within these two processes. Our U-Net consists of four
down-sampling and up-sampling blocks, effectively trans-
forming off-focused input intensity images through a down-
sampling (encoder) and up-sampling (decoder) process into
QPI output images. Adam optimizer with MSE loss function
was used, involving a learning rate starting from le-6 and
decaying exponentially with a decay rate of 0.9 every 10
epochs, over a total of 50 epochs, to carefully avoid overfitting.
The training data set we generated for this task used random
values such that the letters overlapped to different extents.
Figure S illustrates deep learning applied to inseparable data.
As observed, the difference between the prediction and the
ground truth is less than 5%.

It should be noted that there is an important parameter
during the metasurface design, one is the focus length, fys,
which decides the intensity difference of the near- and far-
sighted images. A large difference between them will contribute
to inaccurate phase reconstruction due to the inaccurate
estimation of the axial intensity derivation, as shown in Figure
S6 in the Supporting Information. The accuracy of neural
network reconstruction may be further enhanced by fine-
tuning hyperparameters such as learning rates and exploring
various regularization and optimization techniques. For
predicting complex objects, the U-Net architecture can be
expanded in depth or width and integrated with components,
such as self-attention mechanisms. These mechanisms enable
the network to focus on relevant features and relationships
across spatial positions, thereby enhancing its ability to recover
fine details from the overlapped LCP and RCP images.

In summary, we have introduced a noninterferometric TIE-
based single-shot QPI approach by taking advantage of a
functional metasurface and deep learning phase retrieval. This
polarization-dependent metasurface enables the simultaneous
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capturing of two intensity measurements with different
displacements along the propagation direction and eliminates
the need for specimen or camera displacement in conventional
QPI setups. The integration of a deep learning TIE phase
retrieval pipeline also results in a fast and more robust phase
reconstruction and further improves the detection speed of our
QPI approach. We experimentally demonstrate phase retrievals
on calibrated objects and biological specimens using the
proposed approach, resulting in errors as low as 5%. In
addition, the concept of extracting phase information from
spatially overlapped intensity measurements is also discussed
and demonstrated theoretically, potentially further increasing
the space-bandwidth-product of our approach and making it
suitable for ultrafast QPI imaging in a wide range of
applications.
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